Compressive Strength of Concrete

Hardened Concrete - 1

G.Sivakumar
sivakumar@icomat.in
+91 9790 777000

ICOMAT
CONCRETE INITIATIVES AND INNOVATIONS
Compressive Strength of Concrete

R.C.C. Structures

- Modern Day construction utilizes the efficiency of Reinforced Cement Concrete (R.C.C) to a great extent
- Technological Advances in R.C.C contribute to Construction of Mega and High Rise Structures across the Globe
Compressive Strength of Concrete

R.C.C. Structures

- Compressive Strength of Concrete is an important element in designing R.C.C Structure
- Consequently Quality of concrete manufactured is often measured by its Compressive Strength
Compressive Strength of Concrete

Characteristic Strength vs Design Strength

- Characteristic Strength = Grade of Concrete
- Defined as compressive strength of concrete specimen after 28 days of curing

M25, M30, M35, M40, etc., ……..

- Is Characteristic Strength = Design Strength ?
- No
Compressive Strength of Concrete

Characteristic Strength vs Design Strength

- Design Strength = Target Mean Strength
 = Characteristic Strength + Margin

Target Mean Strength

\[f'_{ck} = f_{ck} + 1.65 \times S \quad \text{or} \quad f_{ck} + 2.33 \times S \]

- \(f'_{ck} \) = Target Mean Strength
- \(f_{ck} \) = Characteristic compressive strength in 28 days
- \(S \) = Standard Deviation

1.65 ➔ Not more 5% of the results falls below characteristic value
2.33 ➔ Not more 1% of the results falls below characteristic value
Compressive Strength of Concrete

Labcrete vs Sitecrete Courtesy: Prof. Basheer, QUB, UK

- Fresh Concrete
- Core Strengths: 16, 18.5, 20, 23
- Standard Cube Strength: 30
- Estimated In-Situ Cube Strength
- Segregation

ICOMAT
CONCRETE INITIATIVES AND INNOVATIONS
Compressive Strength of Concrete

Sampling and Testing of Cube Specimen

- 150mm X 150mm X 150mm – IS, BS EN, SS
- 100mm X 100mm X 100mm (for MSA<20mm) – IS, BS EN, SS

- Sampling as per IS 1199:1959 & IS 4926:2003
- Making Cube Specimen as per IS 516:1959
- Curing Cube Specimen as per IS 516:1959
- Testing Cube Specimen as per IS 516:1959
Compressive Strength of Concrete

Cube Mould Preparation – Fixing & Oiling
Compressive Strength of Concrete

Cube Mould Preparation – Ensuring Shape
Sampling Sufficient volume (0.03 cum for 6 cubes) to get consistent results
Compressive Strength of Concrete

Filling and Compaction in 3 Equal layers with minimum of 35 strokes
Compressive Strength of Concrete

Cube Specimen Identification Marking
De-moulding specimens

- It must be ensured that concrete has attained hardened state before de-moulding

- De-moulding shall be done with utmost care to prevent any damage, external and internal, to the specimen

- One day old specimen is like a “New Born Baby”
Compressive Strength of Concrete

Loosening Base Plate

Lifting from Base Plate

Lifting Moulds gently

Loosening Site Plates
Compressive Strength of Concrete

Curing to prevent loss of moisture

- The test specimen shall be stored at the site in a place free from vibration, under damp matting, sacks or other similar material for 24 hours ± ½ hour from the time of adding the water to the other ingredients

- Lifting and leading shall be done with proper care to avoid impact on specimen

- The specimen shall be stored in water at a temperature of 27° ± 2°C until the time of test
Compressive Strength of Concrete

Curing to prevent loss of moisture

Curing specimen in water at a temperature of 27° ± 2° C until the time of test
Compressive Strength of Concrete

Transportation of test specimens

- Avoid loss of moisture and deviations from the required temperature at all stages of transport, by, for example,

 * packing the hardened test specimens in wet sand or wet sawdust or wet cloths, or sealed in plastic bags containing water *

- Avoid vibration to specimen while lifting and transportation
Compressive Strength of Concrete

Handle with Care

Cube Care

Baby Care
Compressive Strength of Concrete

Testing – Digital Equipment is preferred over Analog
Compressive Strength of Concrete

Testing – Loading Rate for 150 mm cube (140kg/cm²/min or 5.25 N/Sec +/- 5%)
Interpretation of Test Results
Compressive Strength of Concrete

IS 456 Interpretation of Test Results of Sample

- The test results of the sample shall be the average of the strength of three specimen.
- The individual variation should not be more than 15% of the average.
- If more, the test results of the sample are invalid.

Concrete shall be deemed to comply with the strength requirements when both the following condition are met:

- The mean strength determined from any group of four consecutive test results compiles with the appropriate limits in col 2 of Table 11.
- Any individual test result complies with the appropriate limits in col 3 of Table 11.
Compressive Strength of Concrete

IS 456 Interpretation of Test Results of Sample

<table>
<thead>
<tr>
<th>specified Grade</th>
<th>Mean of the Group of 4 Non-Overlapping Consecutive Test Results In N/mm²</th>
<th>Individual Test Results In N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>M 20 or above</td>
<td>> fck + 0.825 X established SD (rounded off to nearest 0.5 N/mm²)</td>
<td>> fck - 3 N/mm²</td>
</tr>
<tr>
<td></td>
<td>Or fck + 3 N/mm², whichever is greater</td>
<td></td>
</tr>
</tbody>
</table>

Only 5% results is expected to fall below “fₖc” when value of “k” used in design is 1.65
Only 1% results is expected to fall below “fₖc” when value of “k” used in design is 2.33

“fₖc actual” can be calculated when 30 or more results are available through
Mean Value – 1.65X k or Mean Value – 2.33 X k
Compressive Strength of Concrete

fck actual - Based on actual cube results

<table>
<thead>
<tr>
<th>Date</th>
<th>Grade</th>
<th>OPC</th>
<th>Water</th>
<th>7 Days</th>
<th>Average</th>
<th>28 Days</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>34.92</td>
<td>30.62</td>
<td>40.19</td>
<td>40.85</td>
</tr>
<tr>
<td>03.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>23.79</td>
<td>25.42</td>
<td>38</td>
<td>39.12</td>
</tr>
<tr>
<td>04.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>23.84</td>
<td>22.9</td>
<td>34.59</td>
<td>32.20</td>
</tr>
<tr>
<td>06.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>22.95</td>
<td>23.37</td>
<td>31.47</td>
<td>31.46</td>
</tr>
<tr>
<td>08.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>29.24</td>
<td>27.73</td>
<td>38.68</td>
<td>35.80</td>
</tr>
<tr>
<td>11.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>24.16</td>
<td>28.17</td>
<td>38.56</td>
<td>40.53</td>
</tr>
<tr>
<td>16.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>23.43</td>
<td>26.39</td>
<td>24.91</td>
<td>35.31</td>
</tr>
<tr>
<td>19.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>24.43</td>
<td>27.8</td>
<td>35.75</td>
<td>38.12</td>
</tr>
<tr>
<td>21.12.09</td>
<td>M25+</td>
<td>320</td>
<td>160</td>
<td>18.84</td>
<td>18.87</td>
<td>40.73</td>
<td>38.21</td>
</tr>
</tbody>
</table>

For illustration purpose
Compressive Strength of Concrete

\[f_{ck\text{ actual}} = 36.23 - 2.33 \times 3.85 \]

\[= 27.25 \text{ MPa} > 25 \text{ MPa} \]

\[\text{hence OK} \]
Factors affecting Test Results

- Material – Parent Batch of the Sample (w/c, bleeding, segregation)

- Men – Mould Preparation, Sampling, Compaction, De-Moulding, Curing, Handling, Identification & Testing

- Machine – Capacity, Stability, Accuracy (Digital is Preferable), Hardness of Machine, Platens & Calibration
Simple Mistakes can reduce the strength of Concrete cubes

So

“Do it right the first time”
Compressive Strength of Concrete

Simple Mistakes reduce the strength - Shape

Proper Shape ensures Equal Diagonal measurements and Uni-axial Loading
Compressive Strength of Concrete

Failure Pattern of Cube – BS EN 12390-3 : 2002

Satisfactory failure Patterns
Simple Mistakes reduce the strength - Shape

Skew Shape resulting in Un-equal Diagonal measurements and eccentric loading

Eccentricity could pull strength down by 4 MPa or more
Compressive Strength of Concrete

Failure Pattern of Cube – BS EN 12390-3 : 2002

Eccentricity could pull strength down by 4 MPa or more
Simple Mistakes reduce the strength - Poor Early Curing

Poor Early Curing will affect 28 day cube results

Cube specimen can lose internal moisture easily when exposed, due to larger surface area
Compressive Strength of Concrete

Simple Mistakes reduce the strength – Poor Compaction

<table>
<thead>
<tr>
<th>Concrete Density in kg/cum</th>
<th>Volume of 150mm size cube</th>
<th>Corresponding Weight of cube in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>0.003375</td>
<td>8.100</td>
</tr>
<tr>
<td>2425</td>
<td>0.003375</td>
<td>8.184</td>
</tr>
<tr>
<td>2450</td>
<td>0.003375</td>
<td>8.269</td>
</tr>
<tr>
<td>2475</td>
<td>0.003375</td>
<td>8.353</td>
</tr>
<tr>
<td>2500</td>
<td>0.003375</td>
<td>8.438</td>
</tr>
</tbody>
</table>

Verifying Cube Weight to ensure Compacted Concrete Density

Low cube weight could be an indication of Poor Compaction
Compressive Strength of Concrete

Thank You

G.Sivakumar
sivakumar@icomat.in
+91 9790 777000